Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Schizophr Bull ; 47(6): 1782-1794, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34080015

RESUMEN

Research in schizophrenia (SZ) emphasizes the need for new therapeutic approaches based on antioxidant/anti-inflammatory compounds and psycho-social therapy. A hallmark of SZ is a dysfunction of parvalbumin-expressing fast-spiking interneurons (PVI), which are essential for neuronal synchrony during sensory/cognitive processing. Oxidative stress and inflammation during early brain development, as observed in SZ, affect PVI maturation. We compared the efficacy of N-acetyl-cysteine (NAC) and/or environmental enrichment (EE) provided during juvenile and/or adolescent periods in rescuing PVI impairments induced by an additional oxidative insult during childhood in a transgenic mouse model with gluthation deficit (Gclm KO), relevant for SZ. We tested whether this rescue was promoted by the inhibition of MMP9/RAGE mechanism, both in the mouse model and in early psychosis (EP) patients, enrolled in a double-blind, randomized, placebo-controlled clinical trial of NAC supplementation for 6 months. We show that a sequential combination of NAC+EE applied after an early-life oxidative insult recovers integrity and function of PVI network in adult Gclm KO, via the inhibition of MMP9/RAGE. Six-month NAC treatment in EP patients reduces plasma sRAGE in association with increased prefrontal GABA, improvement of cognition and clinical symptoms, suggesting similar neuroprotective mechanisms. The sequential combination of NAC+EE reverses long-lasting effects of an early oxidative insult on PVI/perineuronal net (PNN) through the inhibition of MMP9/RAGE mechanism. In analogy, patients vulnerable to early-life insults could benefit from a combined pharmacological and psycho-social therapy.


Asunto(s)
Acetilcisteína/farmacología , Terapia por Ejercicio , Interneuronas/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Trastornos Psicóticos/terapia , Receptor para Productos Finales de Glicación Avanzada/efectos de los fármacos , Adulto , Animales , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Glutamato-Cisteína Ligasa/deficiencia , Humanos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parvalbúminas/metabolismo , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/metabolismo , Transducción de Señal/efectos de los fármacos , Investigación Biomédica Traslacional
2.
Br J Anaesth ; 126(6): 1141-1156, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33641936

RESUMEN

BACKGROUND: Both animal and retrospective human studies have linked extended and repeated general anaesthesia during early development with cognitive and behavioural deficits later in life. However, the neuronal circuit mechanisms underlying this anaesthesia-induced behavioural impairment are poorly understood. METHODS: Neonatal mice were administered one or three doses of propofol, a commonly used i.v. general anaesthetic, over Postnatal days 7-11. Control mice received Intralipid® vehicle injections. At 4 months of age, the mice were subjected to a series of behavioural tests, including motor learning. During the process of motor learning, calcium activity of pyramidal neurones and three classes of inhibitory interneurones in the primary motor cortex were examined in vivo using two-photon microscopy. RESULTS: Repeated, but not a single, exposure of neonatal mice to propofol i.p. caused motor learning impairment in adulthood, which was accompanied by a reduction of pyramidal neurone number and activity in the motor cortex. The activity of local inhibitory interneurone networks was also altered: somatostatin-expressing and parvalbumin-expressing interneurones were hypoactive, whereas vasoactive intestinal peptide-expressing interneurones were hyperactive when the mice were performing a motor learning task. Administration of low-dose pentylenetetrazol to attenuate γ-aminobutyric acid A receptor-mediated inhibition or CX546 to potentiate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-subtype glutamate receptor function during emergence from anaesthesia ameliorated neuronal dysfunction in the cortex and prevented long-term behavioural deficits. CONCLUSIONS: Repeated exposure of neonatal mice to propofol anaesthesia during early development causes cortical circuit dysfunction and behavioural impairments in later life. Potentiation of neuronal activity during recovery from anaesthesia reduces these adverse effects of early-life anaesthesia.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Conducta Animal/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Propofol/toxicidad , Animales , Animales Recién Nacidos , Señalización del Calcio/efectos de los fármacos , Prueba de Laberinto Elevado , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones Transgénicos , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Inhibición Neural/efectos de los fármacos , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/psicología , Prueba de Campo Abierto/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Conducta Social
3.
J Neurosci ; 40(31): 5894-5907, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601247

RESUMEN

The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Lóbulo Frontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico , Animales , Proteínas Quinasas Dependientes de AMP Cíclico , Endorfinas/metabolismo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Parvalbúminas , Técnicas de Placa-Clamp , Transducción de Señal/efectos de los fármacos
4.
Neuroimage ; 221: 117189, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711064

RESUMEN

Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral , Antagonistas de Aminoácidos Excitadores/farmacología , Interneuronas , Ketamina/farmacología , Magnetoencefalografía , Modelos Biológicos , Células Piramidales , Tálamo , Adolescente , Adulto , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reconocimiento Visual de Modelos/efectos de los fármacos , Reconocimiento Visual de Modelos/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología , Adulto Joven
5.
Neuropharmacology ; 158: 107745, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445017

RESUMEN

Non-competitive N-methyl-d-aspartate receptor antagonists mimic schizophrenia symptoms and produce immediate and persistent antidepressant effects. We investigated the effects of ketamine and phencyclidine (PCP) on thalamo-cortical network activity in awake, freely-moving male Wistar rats to gain new insight into the neuronal populations and brain circuits involved in the effects of NMDA-R antagonists. Single unit and local field potential (LFP) recordings were conducted in mediodorsal/centromedial thalamus and in medial prefrontal cortex (mPFC) using microelectrode arrays. Ketamine and PCP moderately increased the discharge rates of principal neurons in both areas while not attenuating the discharge of mPFC GABAergic interneurons. They also strongly affected LFP activity, reducing beta power and increasing that of gamma and high-frequency oscillation bands. These effects were short-lasting following the rapid pharmacokinetic profile of the drugs, and consequently were not present at 24 h after ketamine administration. The temporal profile of both drugs was remarkably different, with ketamine effects peaking earlier than PCP effects. Although this study is compatible with the glutamate hypothesis for fast-acting antidepressant action, it does not support a local disinhibition mechanism as the source for the increased pyramidal neuron activity in mPFC. The short-lasting increase in thalamo-cortical activity is likely associated with the rapid psychotomimetic action of both agents but could also be part of a cascade of events ultimately leading to the persistent antidepressant effects of ketamine. Changes in spectral contents of high-frequency bands by the drugs show potential as translational biomarkers for target engagement of NMDA-R modulators.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Núcleos Talámicos Intralaminares/efectos de los fármacos , Ketamina/farmacología , Núcleo Talámico Mediodorsal/efectos de los fármacos , Fenciclidina/farmacología , Corteza Prefrontal/efectos de los fármacos , Animales , Neuronas GABAérgicas/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Núcleos Talámicos Intralaminares/citología , Núcleos Talámicos Intralaminares/metabolismo , Núcleo Talámico Mediodorsal/citología , Núcleo Talámico Mediodorsal/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tálamo , Vigilia
6.
Nat Commun ; 10(1): 1917, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015467

RESUMEN

STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteínas Munc18/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neocórtex/metabolismo , Convulsiones/genética , Transmisión Sináptica , Potenciales de Acción/efectos de los fármacos , Animales , Anticonvulsivantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Dioxoles/farmacología , Electroencefalografía , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Etosuximida/farmacología , Regulación de la Expresión Génica , Haploinsuficiencia , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/patología , Ratones , Ratones Noqueados , Proteínas Munc18/deficiencia , Canal de Sodio Activado por Voltaje NAV1.2/deficiencia , Neocórtex/efectos de los fármacos , Neocórtex/patología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Piperidinas/farmacología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Convulsiones/prevención & control , Transducción de Señal , Tálamo/efectos de los fármacos , Tálamo/metabolismo
7.
Neurosci Res ; 132: 8-16, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28970101

RESUMEN

Volatile anesthetics have been reported to inhibit hyperpolarization-activated cyclic-nucleotide gated channels underlying the hyperpolarization-activated cation current (Ih) that contributes to generation of synchronized oscillatory neural rhythms. Meanwhile, the developmental change of Ih has been speculated to play a pivotal role during maturation. In this study, we examined the effect of the volatile anesthetic sevoflurane, which is widely used in pediatric surgery, on Ih and on functional Ih activation kinetics of cholinergic interneurons in developing striatum. Our analyses showed that the changes in Ih of cholinergic interneurons occurred in conjunction with maturation. Sevoflurane application (1-4%) caused significant inhibition of Ih in a dose-dependent manner, and apparently slowed Ih activation. In current-clamp recordings, sevoflurane significantly decreased spike firing during the rebound activation, which is essential for responses to the sensory inputs from the cortex and thalamus. The sevoflurane-induced inhibition of Ih in striatal cholinergic interneurons may lead to alterations of the acetylcholine-dopamine balance in the neural circuits during the early postnatal period.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Éteres Metílicos/farmacología , Anestésicos/farmacología , Animales , Corteza Cerebral/metabolismo , Estimulación Eléctrica/métodos , Interneuronas/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Canales de Potasio/metabolismo , Sevoflurano , Tálamo/efectos de los fármacos
8.
J Neurosci ; 37(9): 2336-2348, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130358

RESUMEN

The superficial dorsal horn is the synaptic termination site for many peripheral sensory fibers of the somatosensory system. A wide range of sensory modalities are represented by these fibers, including pain, itch, and temperature. Because the involvement of local inhibition in the dorsal horn, specifically that mediated by the inhibitory amino acids GABA and glycine, is so important in signal processing, we investigated regional inhibitory control of excitatory interneurons under control conditions and peripheral inflammation-induced mechanical allodynia. We found that excitatory interneurons and projection neurons in lamina I and IIo are dominantly inhibited by GABA while those in lamina IIi and III are dominantly inhibited by glycine. This was true of identified neuronal subpopulations: neurokinin 1 receptor-expressing (NK1R+) neurons in lamina I were GABA-dominant while protein kinase C gamma-expressing (PKCγ+) neurons at the lamina IIi-III border were glycine-dominant. We found this pattern of synaptic inhibition to be consistent with the distribution of GABAergic and glycinergic neurons identified by immunohistochemistry. Following complete Freund's adjuvant injection into mouse hindpaw, the frequency of spontaneous excitatory synaptic activity increased and inhibitory synaptic activity decreased. Surprisingly, these changes were accompanied by an increase in GABA dominance in lamina IIi. Because this shift in inhibitory dominance was not accompanied by a change in the number of inhibitory synapses or the overall postsynaptic expression of glycine receptor α1 subunits, we propose that the dominance shift is due to glycine receptor modulation and the depressed function of glycine receptors is partially compensated by GABAergic inhibition.SIGNIFICANCE STATEMENT Pain associated with inflammation is a sensation we would all like to minimize. Persistent inflammation leads to cellular and molecular changes in the spinal cord dorsal horn, including diminished inhibition, which may be responsible for enhance excitability. Investigating inhibition in the dorsal horn following peripheral inflammation is essential for development of improved ways to control the associated pain. In this study, we have elucidated regional differences in inhibition of excitatory interneurons in mouse dorsal horn. We have also discovered that the dominating inhibitory neurotransmission within specific regions of dorsal horn switches following peripheral inflammation and the accompanying hypersensitivity to thermal and mechanical stimuli. Our novel findings contribute to a more complete understanding of inflammatory pain.


Asunto(s)
Inflamación/patología , Inhibición Neural/fisiología , Células del Asta Posterior/fisiología , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/citología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Glicina/farmacología , Hiperalgesia/fisiopatología , Técnicas In Vitro , Inflamación/inducido químicamente , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Ratones , Inhibición Neural/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de Neuroquinina-1/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
9.
PLoS One ; 11(5): e0155192, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171164

RESUMEN

In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA) show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.


Asunto(s)
Estimulación Acústica , Umbral Auditivo/fisiología , Complejo Nuclear Basolateral/fisiología , Electrochoque , Extremidades/fisiología , Interneuronas/fisiología , Anestesia , Animales , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/fisiología , Umbral Auditivo/efectos de los fármacos , Complejo Nuclear Basolateral/efectos de los fármacos , Interneuronas/efectos de los fármacos , Isoflurano/farmacología , Técnicas de Placa-Clamp , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología , Uretano/farmacología
10.
Brain Res ; 1630: 18-24, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26562665

RESUMEN

Parkinson's disease (PD) is caused by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in a deficiency of dopamine in the striatum and an increased release of acetylcholine by tonically active interneurons. Botulinum neurotoxin-A (BoNT-A) is well known for blocking transmitter release by cholinergic presynaptic terminals. Treating striatal hypercholinism by local application of BoNT-A could be a possible new local therapy option of PD. In previous studies of our group, we analyzed the effect of BoNT-A injection into the CPu of 6-OHDA lesioned hemiparkinsonian rats. Our studies showed that BoNT-A application in hemiparkinson rat model is capable of abolishing apomorphine induced rotations for approximately 3 months. Regularly occurring axonal swellings in the BoNT-A infiltrated striata were also discovered, which we named BoNT-A induced varicosities (BiVs). Résumé: Here we investigated the long-term effect of the injection of 1ng BoNT-A into the right CPu of naive Wistar rats on the number of ChAT-ir interneurons as well as on the numeric density and the volumetric size of the BiVs in the CPu. Significant differences in the number of ChAT-ir neurons between the right BoNT-A treated CPu and the left untreated CPu were not detected up to 12 month post BoNT-A injection. The numeric density of BiVs in the treated CPu reached a maximum 3 months after BoNT-A treatment and decreased afterwards, whereas the volume of single BiVs increased steadily throughout the whole time course of the experiment.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Fármacos del Sistema Nervioso Central/administración & dosificación , Interneuronas/citología , Interneuronas/efectos de los fármacos , Neostriado/citología , Neostriado/efectos de los fármacos , Animales , Toxinas Botulínicas Tipo A/efectos adversos , Recuento de Células , Tamaño de la Célula , Fármacos del Sistema Nervioso Central/efectos adversos , Colina O-Acetiltransferasa/metabolismo , Evaluación Preclínica de Medicamentos , Inmunohistoquímica , Masculino , Ratas Wistar , Tiempo , Tirosina 3-Monooxigenasa/metabolismo
11.
J Neurosci ; 35(37): 12733-52, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377463

RESUMEN

Docosahexaenoic acid (DHA) is an ω-3 polyunsaturated fatty acid that is essential in brain development and has structural and signaling roles. Acute DHA administration is neuroprotective and promotes functional recovery in animal models of adult spinal cord injury (SCI). However, the mechanisms underlying this recovery have not been fully characterized. Here we investigated the effects of an acute intravenous bolus of DHA delivered after SCI and characterized DHA-induced neuroplasticity within the adult injured spinal cord. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat cervical hemisection SCI model. A mouse pyramidotomy model was used to confirm that this robust sprouting was not species or injury model specific. Furthermore, we demonstrated that corticospinal fibers sprouting to the denervated side of the cord following pyramidotomy contact V2a interneurons. We also demonstrated increased serotonin fibers and synaptophysin in direct contact with motor neurons. DHA also increased synaptophysin in rat cortical cell cultures. A reduction in phosphatase and tensin homolog (PTEN) has been shown to be involved in axonal regeneration and synaptic plasticity. We showed that DHA significantly upregulates miR-21 and downregulates PTEN in corticospinal neurons. Downregulation of PTEN and upregulation of phosphorylated AKT by DHA were also seen in primary cortical neuron cultures and were accompanied by increased neurite outgrowth. In summary, acute DHA induces anatomical and synaptic plasticity in adult injured spinal cord. This study shows that DHA has therapeutic potential in cervical SCI and provides evidence that DHA could exert its beneficial effects in SCI via enhancement of neuroplasticity. SIGNIFICANCE STATEMENT: In this study, we show that an acute intravenous injection of docosahexaenoic acid (DHA) 30 min after spinal cord injury induces neuroplasticity. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat hemisection spinal cord injury model. A mouse pyramidotomy model was used to confirm that the robust sprouting involved V2a interneurons. We show that DHA significantly upregulates miR-21 and phosphorylated AKT, and downregulates phosphatase and tensin homolog (PTEN), which is involved in suppressing anatomical plasticity, in corticospinal neurons and in primary cortical neuron cultures. We conclude that acute DHA can induce anatomical and synaptic plasticity. This provides direct evidence that DHA could exert its beneficial effects in spinal cord injury via neuroplasticity enhancement.


Asunto(s)
Ácidos Docosahexaenoicos/uso terapéutico , Interneuronas/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Tractos Piramidales/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Animales , Células Cultivadas , Vértebras Cervicales , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/farmacología , Evaluación Preclínica de Medicamentos , Conducta Exploratoria/efectos de los fármacos , Femenino , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intravenosas , Interneuronas/fisiología , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Plasticidad Neuronal/fisiología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tractos Piramidales/lesiones , Tractos Piramidales/patología , Tractos Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Neuronas Serotoninérgicas/fisiología , Neuronas Serotoninérgicas/ultraestructura , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología
12.
ACS Chem Neurosci ; 6(8): 1302-8, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26114759

RESUMEN

Voltage-gated sodium channels (Nav) are crucial to the initiation and propagation of action potentials (APs) in electrically excitable cells, and during the past decades they have received considerable attention due to their therapeutic potential. Here, we report for the first time the synthesis and the electrophysiological evaluation of 16 ligands based on a 2-methylbenzamide scaffold that have been identified as Nav1.1 modulators. Among these compounds, N,N'-(1,3-phenylene)bis(2-methylbenzamide) (3a) has been selected and evaluated in ex-vivo experiments in order to estimate the activation impact of such a compound profile. It appears that 3a increases the Nav1.1 channel activity although its overall impact remains moderate. Altogether, our preliminary results provide new insights into the development of small molecule activators targeting specifically Nav1.1 channels to design potential drugs for treating CNS diseases.


Asunto(s)
Benzamidas/química , Moduladores del Transporte de Membrana/farmacología , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/síntesis química , Moduladores del Transporte de Membrana/química , Estructura Molecular , Ratas , Técnicas de Cultivo de Tejidos
13.
J Neurosci Res ; 93(8): 1229-39, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25789848

RESUMEN

UNLABELLED: The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem, we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-min bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week, for 7.5 weeks) or not step trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The numbers of activated cholinergic central canal cluster cells and partition neurons were higher in both step-trained and nontrained rats than in untreated rats and were higher in nontrained than in step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhances the excitability of a broader cholinergic interneuronal population than does step training. The numbers of activated interneurons in laminae II-VI of lumbar cross-sections were higher in both step-trained and nontrained rats than in untreated rats, and they were highest in step-trained rats. This finding suggests that this population of interneurons is responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping has an additive effect. The numbers of activated motoneurons of all size categories were higher in the step-trained group than in the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. SIGNIFICANCE: We identified neurons within the spinal cord networks that are activated during assisted stepping in paraplegic rats. We stimulated the spinal cord and administered a drug to help the rats step. One group was trained to step and another was not trained. We observed a lower percentage of activated neurons in specific spinal cord regions in trained rats than in nontrained rats after a 1-hr stepping bout, suggesting that step training reduces activation of some types of spinal neurons. This observation indicates that training makes the spinal networks more efficient and suggests a "learning" phenomenon in the spinal cord without any brain input.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Interneuronas/metabolismo , Actividad Motora/fisiología , Agonistas de Receptores de Serotonina/farmacología , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Espacio Epidural , Femenino , Interneuronas/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos
14.
J Appl Toxicol ; 35(8): 884-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25424614

RESUMEN

3,3'-Iminodipropionitrile (IDPN) causes neurofilament (NF)-filled swellings in the proximal segments of many large-caliber myelinated axons. This study investigated the effect of maternal exposure to IDPN on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 67 or 200 ppm IDPN in drinking water from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, female offspring subjected to analysis had decreased parvalbumin(+), reelin(+) and phospho-TrkB(+) interneurons in the dentate hilus at 200 ppm and increased granule cell populations expressing immediate-early gene products, Arc or c-Fos, at ≥ 67 ppm. mRNA expression in the dentate gyrus examined at 200 ppm decreased with brain-derived neurotrophic factor (Bdnf) and very low density lipoprotein receptor. Immunoreactivity for phosphorylated NF heavy polypeptide decreased in the molecular layer of the dentate gyrus and the stratum radiatum of the cornu ammonis (CA) 3, portions showing axonal projections from mossy cells and pyramidal neurons, at 200 ppm on PND 21, whereas immunoreactivity for synaptophysin was unchanged in the dentate gyrus. Observed changes all disappeared on PND 77. There were no fluctuations in the numbers of apoptotic cells, proliferating cells and subpopulations of granule cell lineage in the subgranular zone on PND 21 and PND 77. Thus, maternal IDPN exposure may reversibly affect late-stage differentiation of granule cell lineages involving neuronal plasticity as evident by immediate-early gene responses to cause BDNF downregulation resulting in a reduction in parvalbumin(+) or reelin(+) interneurons and suppression of axonal plasticity in the mossy cells and CA3 pyramidal neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Hipocampo/citología , Interneuronas/efectos de los fármacos , Nitrilos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Lipoproteínas VLDL/efectos de los fármacos , Proteínas de Neurofilamentos/metabolismo , Embarazo , Ratas , Proteína Reelina , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
15.
Toxicology ; 328: 123-34, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25497112

RESUMEN

Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2(+) progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling(+) apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction of cholinergic inputs into granule cell lineages and/or GABAergic interneurons as indicated by decreased transcript levels of Chrnb2 and numbers of Chrnb2(+) interneurons caused by myelin vacuolation in the septal-hippocampal pathway.


Asunto(s)
Fibras Colinérgicas/efectos de los fármacos , Hexaclorofeno/toxicidad , Hipocampo/efectos de los fármacos , Exposición Materna/efectos adversos , Vaina de Mielina/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Vacuolas/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Linaje de la Célula , Fibras Colinérgicas/metabolismo , Fibras Colinérgicas/patología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Edad Gestacional , Hipocampo/metabolismo , Hipocampo/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Fenotipo , Embarazo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Ratas , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteína Reelina , Tubulina (Proteína)/metabolismo , Vacuolas/metabolismo , Vacuolas/patología
16.
Pflugers Arch ; 467(6): 1367-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24953239

RESUMEN

Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.


Asunto(s)
Potenciales de Acción , Corteza Cerebral/fisiopatología , Epilepsia Tipo Ausencia/fisiopatología , Interneuronas/fisiología , Tálamo/fisiopatología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Tálamo/citología , Tálamo/metabolismo
17.
PLoS One ; 9(6): e101077, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971630

RESUMEN

The loss and injury of neurons play an important role in the onset of various neurodegenerative diseases, while both microgliosis and astrocyte loss or dysfunction are significant causes of neuronal degeneration. Previous studies have suggested that an extract enriched panaxadiol saponins from ginseng has more neuroprotective potential than the total saponins of ginseng. The present study investigated whether a fraction of highly purified panaxadiol saponins (termed as Rb fraction) was protective for both glia and neurons, especially GABAergic interneurons, against kainic acid (KA)-induced excitotoxicity in rats. Rats received Rb fraction at 30 mg/kg (i.p.), 40 mg/kg (i.p. or saline followed 40 min later by an intracerebroventricular injection of KA. Acute hippocampal injury was determined at 48 h after KA, and impairment of hippocampus-dependent learning and memory as well as delayed neuronal injury was determined 16 to 21 days later. KA injection produced significant acute hippocampal injuries, including GAD67-positive GABAergic interneuron loss in CA1, paralbumin (PV)-positive GABAergic interneuron loss, pyramidal neuron degeneration and astrocyte damage accompanied with reactive microglia in both CA1 and CA3 regions of the hippocampus. There was also a delayed loss of GAD67-positive interneurons in CA1, CA3, hilus and dentate gyrus. Microgliosis also became more severe 21 days later. Accordingly, KA injection resulted in hippocampus-dependent spatial memory impairment. Interestingly, the pretreatment with Rb fraction at 30 or 40 mg/kg significantly protected the pyramidal neurons and GABAergic interneurons against KA-induced acute excitotoxicity and delayed injury. Rb fraction also prevented memory impairments and protected astrocytes from KA-induced acute excitotoxicity. Additionally, microglial activation, especially the delayed microgliosis, was inhibited by Rb fraction. Overall, this study demonstrated that Rb fraction protected both astrocytes and neurons, especially GABAergic interneurons, and maintained microglial homeostasis against KA-induced excitotoxicity. Therefore, Rb fraction has the potential to prevent and treat neurodegenerative diseases.


Asunto(s)
Astrocitos/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Aprendizaje por Laberinto , Fármacos Neuroprotectores/farmacología , Panax/química , Extractos Vegetales/farmacología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Cognición , Masculino , Ratas , Ratas Sprague-Dawley , Rubidio/química
18.
J Surg Res ; 189(1): 159-65, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24602480

RESUMEN

BACKGROUND: Resveratrol has been shown to attenuate cerebral vasospasm after subarachnoid hemorrhage (SAH); however, no study has explored its neuroprotective effect in early brain injury (EBI) after experimental SAH. The aim of this study was to evaluate the antiapoptotic function of resveratrol in EBI and its relationship with the PI3K/Akt survival pathway. METHODS: Experimental SAH was induced in adult male rats by prechiasmatic cistern injection. Control and SAH rats were divided into six groups and treated with low (20 mg/kg) or high (60 mg/kg) concentrations of resveratrol with or without LY294002 cotreatment. Brain samples of the rats were analyzed by immunohistochemistry, immunofluorescence staining, Western blotting, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assays. RESULTS: High-concentration but not low-concentration resveratrol treatment in SAH rats led to a significant increase in phosphorylated Akt (p-Akt) protein levels compared with SAH rats without treatment. In addition, p-Akt-positive cells mainly colocalized with NeuN-positive cells. Neuronal apoptosis in SAH rat brain was attenuated by high-concentration resveratrol treatment. The antiapoptotic effect of resveratrol in SAH rats could be partially abrogated by the PI3K/Akt signaling inhibitor LY294002. CONCLUSIONS: Our results show that resveratrol has an antiapoptotic effect in EBI and that resveratrol might act through the PI3K/Akt signaling pathway.


Asunto(s)
Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Interneuronas/efectos de los fármacos , Fitoterapia , Estilbenos/uso terapéutico , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/patología , Animales , Antioxidantes/farmacología , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Diagnóstico Precoz , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Resveratrol , Estilbenos/farmacología , Hemorragia Subaracnoidea/metabolismo
19.
Mol Brain ; 6: 43, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24228616

RESUMEN

BACKGROUND: The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely used to treat depression and anxiety disorders, but cellular mechanisms underlying the antidepressant effect of FLX remain largely unknown. The generally accepted effect of chronic FLX treatment is increased adult neurogenesis in the hippocampal dentate gyrus. It was recently demonstrated that FLX treatments can reverse the established neuronal maturation of granule cells in the hippocampal dentate gyrus and of gamma-aminobutyric acidergic (GABAergic) interneurons in the basolateral amygdala. However, it is not clear whether this dematuration effect of FLX occurs in other brain regions. Thus, in this study, we used immunohistological analysis to assess the effect of FLX treatment on GABAergic interneurons in the medial frontal cortex (mFC) and reticular thalamic nucleus (RTN). RESULTS: Immunofluorescence analysis for perineuronal nets (PNNs), which is a marker of neuronal maturation, and for parvalbumin, calretinin, and somatostatin, which are markers for specific GABAergic interneuron type, showed lower number of parvalbumin-positive (+) cells and PNN+/parvalbumin+ cells in the mFC of FLX-treated mice compared to vehicle-treated mice. However, FLX treatment had no effect on the number of cells expressing calretinin and somatostatin in the mFC. In the RTN, the number of PNN+ cells and parvalbumin+ cells was unaltered by FLX treatments. Furthermore, the number of total GABA+ cells and apoptotic cells in the mFC was similar between vehicle- and FLX-treated mice, suggesting that FLX treatment did not induce cell death in this region. Rather, our findings suggest that the decreased number of parvalbumin+ cells in the mFC was due to a decreased expression of parvalbumin proteins in the interneurons. CONCLUSIONS: This study indicates that FLX decreases the levels of parvalbumin, a mature marker of fast-spiking interneurons, and PNNs in parvalbumin+ interneurons in the mFC, suggesting that FLX treatment induces a dematuration of this type of neurons. Induction of a juvenile-like state in fast-spiking inhibitory interneurons in these regions might be involved in the therapeutic mechanism of this antidepressant drug and/or some of its adverse effects.


Asunto(s)
Envejecimiento/metabolismo , Fluoxetina/farmacología , Lóbulo Frontal/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Calbindina 2/metabolismo , Recuento de Células , Fluoxetina/administración & dosificación , Lóbulo Frontal/efectos de los fármacos , Neuronas GABAérgicas/patología , Interneuronas/efectos de los fármacos , Interneuronas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Somatostatina/metabolismo , Tálamo/efectos de los fármacos , Tálamo/metabolismo , Tálamo/patología , Ácido gamma-Aminobutírico/metabolismo
20.
Neuron ; 79(1): 153-66, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23770257

RESUMEN

The capacity for goal-directed action depends on encoding specific action-outcome associations, a learning process mediated by the posterior dorsomedial striatum (pDMS). In a changing environment, plasticity has to remain flexible, requiring interference between new and existing learning to be minimized, yet it is not known how new and existing learning are interlaced in this way. Here we investigated the role of the thalamostriatal pathway linking the parafascicular thalamus (Pf) with cholinergic interneurons (CINs) in the pDMS in this process. Removing the excitatory input from Pf to the CINs was found to reduce the firing rate and intrinsic activity of these neurons and produced an enduring deficit in goal-directed learning after changes in the action-outcome contingency. Disconnection of the Pf-pDMS pathway produced similar behavioral effects. These data suggest that CINs reduce interference between new and existing learning, consistent with claims that the thalamostriatal pathway exerts state control over learning-related plasticity.


Asunto(s)
Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Aprendizaje/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Objetivos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Aprendizaje/efectos de los fármacos , Masculino , N-Metilaspartato/toxicidad , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología , Tálamo/efectos de los fármacos , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA